人妻少妇专区

Skip to content
Science & Technology

Is a gamma-ray laser possible?

BEAM US UP: A newly funded research project combines the theoretical expertise of 人妻少妇专区 scientists with the theoretical and experimental capabilities of ELI Beamlines in the Czech Republic. Pictured is the compressor for generating the ultrahigh-intensity laser pulses required for the project. (Photo courtesy of ELI Beamlines)

Federal funding will allow Rochester scientists and their European collaborators to study the feasibility of coherent light sources beyond x-rays.

Since the laser was invented in the 1960s, scientists have been working to increase lasers鈥 peak power and to design machines producing coherent light at progressively shorter wavelengths that can improve image resolution and enable probing of quantum nuclear states.

Progress has been made with regard to peak power, most notably with the invention of chirped pulse amplification by 人妻少妇专区 researchers in the 1980s, a breakthrough that garnered the Nobel Prize in Physics in 2018. However, developing lasers that produce very-high-energy light, such as gamma rays, has remained elusive. That鈥檚 in part because 鈥渃oherent鈥 light waves are in sync with each other, creating a stronger effect in combination. This effect is harder to achieve at higher-photon energies. And while lasers can now produce coherent light in the visible, ultraviolet, and x-ray ranges of the electromagnetic spectrum, doing so beyond the x-ray range鈥攚hich is where gamma rays exist鈥攔emains a challenge.

To overcome this obstacle, Rochester researchers secured in collaboration with colleagues from in the Czech Republic to investigate the coherence properties of the radiation emitted when dense bunches of electrons collide with a strong laser field. In doing so, the researchers aim to understand how to produce coherent gamma rays and use these new radiation sources for research and applications to create antimatter, study nuclear processes, and image dense objects or materials, such as scanning shipping containers.

鈥淭he ability to make coherent gamma rays would be a scientific revolution in creating new kinds of light sources, similar to how the discovery and development of visible light and x-ray sources changed our fundamental understanding of the atomic world,鈥 says , a professor of at the 人妻少妇专区 and a distinguished scientist at the University鈥檚 , who is the lead investigator on the NSF grant.

US鈥揈urope connections facilitate laser science advancements

The project combines the theoretical expertise of Rochester scientists with the theoretical and experimental capabilities of ELI Beamlines in the Czech Republic, strengthening ties between the US and Europe in the field of high-intensity lasers.

Wide shot of a bright room filled with the equipment required to run ultrahigh intensity laser experiments to test the possibility of producing coherent gamma rays.
GAMMA-RAY GOALS: The experimental hall at ELI Beamlines where the experiments led by 人妻少妇专区 scientist Antonino Di Piazza will be performed. If successful, the research could lead to the creation of a gamma-ray free electron laser, a major goal in the scientific community. (Photo courtesy of ELI Beamlines)

The scientists will use complex theories and high-tech experiments to study how fast-moving electrons interact with the laser to emit high-energy light. They鈥檒l start by looking at simpler cases, such as how one or two electrons emit light, before moving on to more complicated scenarios with many electrons, to produce coherent gamma rays. Such a result builds on the work of scientists who have created coherent x-rays, including the teams at , , and .

鈥淲e are not the first scientists who have tried creating gamma rays in this way,鈥 says Di Piazza. 鈥淏ut we are doing so using a fully quantum theory鈥攓uantum electrodynamics鈥攚hich is an advanced approach to addressing this problem.鈥

If successful, this project could lead to the creation of a gamma-ray free electron laser, a major goal in the scientific community, according to Di Piazza. 鈥淥f course,鈥 he says, 鈥渟tep one is to show that the science is possible before building such a device.鈥

This work will also contribute to advancing the science case for a potential future NSF OPAL high-power laser user facility at the 人妻少妇专区, another NSF-funded project on which Di Piazza is a co-principal investigator, and which has the potential to be a unique open-access resource for the global scientific community. NSF OPAL is part of , an international network of networks studying extreme light in intensity, time, and space formed to address the grand challenge questions defined at the frontiers of laser-matter coherent interactions at the shortest distances, highest intensities, and fastest times.

Illustration of the names and locations of the NSF X-Lites facilities connected by red lines and over a lay showing a stylized map of the world.
NET(WORK) EFFECT: The 人妻少妇专区鈥檚 Laboratory for Laser Energetics is part of the NSF X-Lites, a 鈥渘etwork of networks鈥 studying extreme light in intensity, time, and space. (Image courtesy NSF X-Lites)