人妻少妇专区

Skip to content
Science & Technology

Scientists developing microchips with brain and lung tissue to study viral neuroinflammation

LUNG-TO-BRAIN CHIP: 人妻少妇专区 researchers will use microphysiological systems鈥攕mall chips with ultrathin membranes supporting 3D networks of human cells, also known as "tissue chips"鈥攖o model respiratory disease effects on the brain and test therapeutic drugs to prevent and treat symptoms. (人妻少妇专区 photo / J. Adam Fenster)

Researchers will use tissue-on-chip technology as a new way to explore the relationship between the lungs and brain.

Scientists are developing advanced tools to understand and treat neurological symptoms such as brain fog associated with respiratory diseases like influenza. The Biomedical Advanced Research and Development Authority (BARDA), part of the Administration for Strategic Preparedness and Response (ASPR) within the US Department of Health and Human Services (HHS), awarded a three-year contract to researchers at the 人妻少妇专区 to develop a technology to model respiratory disease effects on the brain and test therapeutic drugs to prevent and treat symptoms. The base-year is funded at $2.4 million with two option years which, if fully funded, would total $7.1 million.

The project will use microphysiological systems (MPS)鈥攕mall chips with ultrathin membranes supporting 3D networks of human cells, also known as 鈥渢issue chips鈥濃攖o simulate infection and treatment in vitro. This tissue chips will incorporate human lung and brain tissue models.

鈥淭his is another step toward making disease modeling and drug discovery focused from the very beginning on more complex, human-relevant systems,鈥 says principal investigator , a Dean鈥檚 Professor of聽聽at Rochester with joint appointments in聽,听,听, and聽. 鈥淭hese chips can help make the whole drug discovery process faster.鈥

A young woman wearing a white lab coat and gloves adds cells to a new lung to brain chip device.
Kaihua Chen, a biomedical engineering PhD student working with Professor James McGrath, seeds microphysiological systems by using a pipette to implant cells in the device. (人妻少妇专区 photo / J. Adam Fenster)

The project builds on work at Rochester鈥檚 recently established Translational Center for Barrier Microphysiological Systems (TraCe-bMPS) to build FDA-qualified drug development tools for studying the body鈥檚 barrier functions in combating disease. The center was created earlier this year with a $7.5 million grant from the National Institutes of Health.

Co-investigator , the William R. Kenan Jr. Professor of聽 and director of TraCe-bMPS, has been using microphysiological systems to study the mechanism by which inflammatory factors can enter the brain through the circulation and cause injury. The new BARDA-funded project will link two of McGrath鈥檚 modular, mass-producible chips specialized to mimic different organs.

鈥淭his project will connect this 鈥榖rain鈥 chip upstream of a second chip that models a common source of those injurious factors: the infected lung,鈥 says McGrath. 鈥淚鈥檓 thrilled to be working with a highly interdisciplinary Rochester team and with BARDA to develop what will be a scientifically important new tool.鈥

As with long COVID, common viruses such as influenza can produce chronic symptoms such as brain fog, fatigue, and enduring pain. The project offers a new way to explore the relationship between the lungs and brain.

鈥淭he respiratory tract, with its cellular, humoral, and hard-wired conduits to the brain, stands as the first line of defense against emerging infectious threats from zoonotic spillovers,鈥 says co-investigator , director of the聽聽at the . 鈥淲e and our collaborators, with the support of the National Institute on Aging, have worked for the past several years to investigate these mechanisms in the hopes of applying therapeutic agents to ameliorate neurologic disease, especially in the elderly that are vulnerable to these infections. Now, with a world-class team of in-house experts at developing labs-on-a-chip, we have the unique opportunity to fast-track our research in a new lung-to-brain chip.鈥

young woman uses tweezers to move small chips from a clear panel to a large machine as part of process to create a device of lung to brain chips.
Biomedical engineering PhD student Katie Daniel loads photonic sensor chips into a printer to be functionalized with capture molecules in the lab of Professor Benjamin Miller. (人妻少妇专区 photo / J. Adam Fenster)

, a professor of pediatrics, biomedical engineering, and pharmacology and physiology, has studied the disease processes that lead to acute respiratory distress syndrome (ARDS) in the hopes of developing new treatments for this devastating disease.

鈥淪tudying this required us to use cultured cells from the lung, but almost always, these are grown and studied by themselves, which is not anywhere close to the situation in the lung where over 40 different cell types co-exist and interact to allow us to live. Thus, this is way too simplistic of a model,鈥 says Dean, co-investigator of the project. 鈥淥n the other extreme, we have used animal models to test hypotheses and drugs in development, but these models are so hard to control and make sense of because so many different things are going on, and it is difficult to attribute a response to a single pathway, leading to a system that is almost too complicated.鈥

He says the new approach is a win-win solution that will allow the researchers to mimic complex interactions between key cell types in the lung but in a controlled manner.

, the Marie Curran Wilson and Joseph Chamberlain Wilson Professor of and director of the , will also serve as a co-investigator; , the Donald and Mary Clark Distinguished Professor in聽聽and a professor of biomedical engineering, will act as a consultant. The team will be working with 人妻少妇专区 spinout companies to do medium-throughput instrumentation and to develop the chips.

The project will last three years, and by the end of the first year, the team aims to link the tissue chip systems with immune cells, demonstrate that they can infect the lung chip with influenza, and observe an inflammatory response in the brain chip. This project has been supported in whole or in part with federal funds from the Department of Health and Human Services; Administration for Strategic Preparedness and Response; Biomedical Advanced Research and Development Authority (BARDA), under contract number 75A50124C00040.

Elected officials voice support for innovative technology development

US Senator Charles Schumer: 鈥淚 am thrilled to see our researchers leading the charge in groundbreaking medical innovation with this substantial $7.1 million award from the Department of Health and Human Services. This investment speaks volumes about the world-class research happening right here in Rochester. By developing microchips that mimic brain and lung tissue, our scientists are pioneering new ways to understand and combat respiratory diseases and their impact on the brain. This cutting-edge research has the potential to revolutionize our approach to treating these diseases, paving the way for more effective therapies and ultimately saving lives. I remain committed to advocating for robust federal support for scientific advancements that can change the future of healthcare and improve public health outcomes for all.鈥

US Senator Kirsten Gillibrand: 鈥淩esearchers at the 人妻少妇专区 are leading the charge in disease modeling and drug discovery. This $7.1 million contract from HHS will help researchers at the 人妻少妇专区 develop the most advanced technology to model respiratory disease effects and find ways to prevent and treat symptoms. I will continue to fight to secure federal resources to support the innovative work of researchers at the 人妻少妇专区.鈥

Congressman Joe Morelle: 鈥淭he 人妻少妇专区 continues to drive groundbreaking research, innovation, and scientific advancement in the world of medicine. This significant federal award is further proof of their leadership and limitless potential. I congratulate their team of researchers on their outstanding achievements that will change the way we fight diseases.鈥